Your Cart is Empty

5G and Impacts to Health Research

5G and Its Impacts to Health Research

Somavedic Science-based Certifications and Studies

Certified to Reduce the Negative Cellular Effects of Mobile Phone Radiation

This test shows that cell regeneration/wound healing of connective tissue fibroblasts and activity of functional neutrophils as the first defense of the innate immune system against invading microbial pathogens are significantly decreased by mobile phone radiation.

The use of the Somavedic Amber was able to attenuate these unwanted effects.

5G and Impacts to Health Research

5G utilizes not only the EMF frequencies used by 3G and 4G, but also higher millimeter wave and sub-millimeter wave frequencies. 

Small cells being installed in cities are usually 4G technology with a wide variety of frequencies. 

Thus, when we consider the health impacts of 5G and small cellswe are looking at research on current technologies and frequencies in use in addition to research on sub-millimeter and millimeter waves.

Pre-5G EMF radiation and health risks research can be found here.

  1. Joel M Moskowitz. “We have no Reason to Believe 5G is Safe.”  Scientific American. October 17, 2019.
  2. Cindy L. Russell. 5G wireless telecommunications expansion: Public health and environmental implications. Environmental Research, Volume 165, 2018, Pages 484-495, ISSN 0013-9351, https://doi.org/10.1016/j.envres.2018.01.016.
  3. Ronald N. Kostoff, Paul Heroux, Michael Aschner, Aristides Tsatsakis. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicology Letters, Volume 323, 2020, Pages 35-40. ISSN 0378-4274. https://doi.org/10.1016/j.toxlet.2020.01.020.
  4. Di Ciaula A. Towards 5G communication systems: Are there health implications? Int J Hyg Environ Health. 2018 Apr;221(3):367-375. doi: 10.1016/j.ijheh.2018.01.011. Epub 2018 Feb 2. PMID: 29402696.
  5. J J, Bevelacqua et al. A New Look at Three Potential Mechanisms Proposed for the Carcinogenesis of 5G Radiation. Journal of biomedical physics & engineering vol. 10,6 675-678. 1 Dec. 2020, doi:10.31661/jbpe.v0i0.2008-1157.
  6. Neufeld E, Kuster N. Systematic Derivation of Safety Limits for Time-Varying 5G Radiofrequency Exposure Based on Analytical Models and Thermal Dose. Health Phys. 2018 Dec;115(6):705-711. doi: 10.1097/HP.0000000000000930. PMID: 30247338.
  7. Simkó, Myrtill, and Mats-Olof Mattsson. 5G Wireless Communication and Health Effects-A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. International journal of environmental research and public health vol. 16,18 3406. 13 Sep. 2019, doi:10.3390/ijerph16183406.
  8. Leszczynski D. Physiological effects of millimeter-waves on skin and skin cells: an overview of the to-date published studies. Rev Environ Health. 2020 Aug 24;35(4):493-515. doi: 10.1515/reveh-2020-0056. PMID: 32829319.
  9. Matthew, Ugochukwu O, and Jazuli S Kazaure. Chemical polarization effects of electromagnetic field radiation from the novel 5G network deployment at ultra high frequency. Health and technology, 1-13. 27 Jan. 2021, doi:10.1007/s12553-020-00501-x.
  10. S. Kim and I. Nasim, Human Electromagnetic Field Exposure in 5G at 28 GHz, in IEEE Consumer Electronics Magazine, vol. 9, no. 6, pp. 41-48, 1 Nov. 2020, doi: 10.1109/MCE.2019.2956223.
  11. Betzalel N, Ben Ishai P, Feldman Y. The human skin as a sub-THz receiver - Does 5G pose a danger to it or not? Environ Res. 2018 May;163:208-216. doi: 10.1016/j.envres.2018.01.032. Epub 2018 Feb 22. PMID: 29459303.
  12. N. Betzalel, Y. Feldman and P. B. Ishai, The Modeling of the Absorbance of Sub-THz Radiation by Human Skin,  in IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 5, pp. 521-528, Sept. 2017, doi: 10.1109/TTHZ.2017.2736345.
  13. Pall ML. Millimeter (MM) wave and microwave frequency radiation produce deeply penetrating effects: the biology and the physics. Rev Environ Health. 2021 May 26. doi: 10.1515/reveh-2020-0165. Epub ahead of print. PMID: 34043892.
  14. I. Belyaev, Main Regularities and Health Risks from Exposure to Non-Thermal Microwaves of Mobile Communication, 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 2019, pp. 111-116, doi: 10.1109/TELSIKS46999.2019.9002324.
  15. N.P. Zalyubovskaya. Biological Effect of Millimeter Waves. 1977.
  16. Pakhomov AG, Akyel Y, Pakhomova ON, Stuck BE, Murphy MR. Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics. 1998;19(7):393-413. doi: 10.1002/(sici)1521-186x(1998)19:7<393::aid-bem1>3.0.co;2-x. PMID: 9771583.
  17. D. A. Stewart, T. R. Gowrishankar and J. C. Weaver, Skin Heating and Injury by Prolonged Millimeter-Wave Exposure: Theory Based on a Skin Model Coupled to a Whole Body Model and Local Biochemical Release From Cells at Supraphysiologic Temperatures, in IEEE Transactions on Plasma Science, vol. 34, no. 4, pp. 1480-1493, Aug. 2006, doi: 10.1109/TPS.2006.878996.
  18. Mazloum, T., Aerts, S., Joseph, W.et al. RF-EMF exposure induced by mobile phones operating in LTE small cells in two different urban cities. Ann. Telecommun. 74, 35–42 (2019). https://doi.org/10.1007/s12243-018-0680-1.
  19. A. M. El-Hajj and T. Naous, Radiation Analysis in a Gradual 5G Network Deployment Strategy,  2020 IEEE 3rd 5G World Forum (5GWF), 2020, pp. 448-453, doi: 10.1109/5GWF49715.2020.9221314.
  20. B. Selmaoui et al. Exposure of South Korean Population to 5G Mobile Phone Networks (3.4–3.8 GHz). BioElectroMagnetics,Volume42, Issue 5, July 2021,Pages 407-414. https://doi.org/10.1002/bem.22345.
  21. Karaboytcheva, M. (2020). Effects of 5G wireless communication on human health [PDF].  European Parliamentary Research Service. Luxembourg: European Parliament. Retrieved from https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/646172/EPRS_BRI(2020)646172_EN.pdf?fbclid=IwAR3cD0TDOqGHpOmCWPnANN-Y6RBaa0eoQ4ZN0nuUwpVaLL8MIDtt6aKtiYM.
  22. Nasim, Imtiaz and Seungmo Kim. Human Exposure to RF Fields in 5G Downlink. arXiv: Signal Processing (2017): n. Pag.
  23. Gandhi, O., & Riazi, A. (1986). Absorption of Millimeter Waves by Human Beings and its Biological Implications. IEEE Transactions On Microwave Theory And Techniques,34(2), 228-235. https://doi.org/10.1109/tmtt.1986.1133316
  24. Sypniewska, R., Millenbaugh, N., Kiel, J., Blystone, R., Ringham, H., Mason, P., & Witzmann, F. (2010). Protein changes in macrophages induced by plasma from rats exposed to 35 GHz millimeter waves. Bioelectromagnetics,31(8), 656-663. https://doi.org/10.1002/bem.20598
  25. Ramundo-Orlando, A., Longo, G., Cappelli, M., Girasole, M., Tarricone, L., Beneduci, A., & Massa, R. (2009). The response of giant phospholipid vesicles to millimeter waves radiation. Biochimica Et Biophysica Acta (BBA) – Biomembranes,1788(7), 1497-1507. https://doi.org/10.1016/j.bbamem.2009.04.006
  26. Chen, Q., Lu, D., Jiang, H., & Xu, Z. (2008). [Effects of millimeter wave on gene expression in human keratinocytes]. Zhejiang Da Xue Xue Bao Yi Xue Ban,37(1), 8-23. 
  27. Feldman, Y., Puzenko, A., Ben Ishai, P., Caduff, A., & Agranat, A. (2008). Human Skin as Arrays of Helical Antennas in the Millimeter and Submillimeter Wave Range. Physical Review Letters,100(12). https://doi.org/10.1103/physrevlett.100.128102
  28. Gapeev, A., Rubanik, A., Pashovkin, T., & Chemeris, N. (2007). [Thermoelastic excitation of acoustic waves in biological models under the effect of the high peak-power pulsed electromagnetic radiation of extremely high frequency]. Biofizika,52(6), 92-1087. 
  29. Millenbaugh, N., Kiel, J., Ryan, K., Blystone, R., Kalns, J., & Brott, B. et al. (2006). Comparison of blood pressure and thermal responses in rats exposed to millimeter wave energy or environmental heat. Shock,25(6), 625-632. https://doi.org/10.1097/01.shk.0000209550.11087.fd
  30. Usichenko, T., Edinger, H., Gizhko, V., Lehmann, C., Wendt, M., & Feyerherd, F. (2006). Low-Intensity Electromagnetic Millimeter Waves for Pain Therapy. Evidence-Based Complementary And Alternative Medicine,3(2), 201-207. https://doi.org/10.1093/ecam/nel012
  31. Gugkova, O., Gudkov, S., Gapeev, A., Bruskov, V., Rubannik, A., & Chemeris, N. (2005). [The study of the mechanisms of formation of reactive oxygen species in aqueous solutions on exposure to high peak-power pulsed electromagnetic radiation of extremely high frequencies]. Biofizika,50(5). 
  32. Isakhanian, V., & Trchunian, A. (2005). [Indirect and repeated electromagnetic irradiation of extremely high freguency of bacteria Escherichia coli]. Biofizika,50(4). 
  33. Makar, V., Logani, M., Bhanushali, A., Kataoka, M., & Ziskin, M. (2004). Effect of millimeter waves on natural killer cell activation. Bioelectromagnetics,26(1), 10-19. https://doi.org/10.1002/bem.20046
  34. Lushnikov, K., Shumilina, Y., Yakushina, V., Gapeev, A., Sadovnikov, V., & Chemeris, N. (2004). Effects of Low-Intensity Ultrahigh Frequency Electromagnetic Radiation on Inflammatory Processes. Bulletin Of Experimental Biology And Medicine,137(4), 364-366. https://doi.org/10.1023/b:bebm.0000035131.54215.ca  
  35. Sinotova, O., Novoselova, E., Glushkova, O., & Fesenko, E. (2004). [A comparison of the effects of millimeter and centimeter waves on tumor necrosis factor production in mouse cells]. Biofizika,49(3). 
  36. Gapeev, A., Lushnikov, K., Shumilina, I., Sirota, N., Sadovnikov, V., & Chemeris N, N. (2003). [Effects of low-intensity extremely high frequency electromagnetic radiation on chromatin structure of lymphoid cells in vivo and in vitro]. Radiatsionnaya Biologiya Radioekologiya,43(1), 87-92.
  37. Lushnikov, K., Gapeedv, A., Shumilina, I., Shibaev, N., Sadovnikov, V., & Chmeris, N. (2003). [Decrease in the intensity of the cellular immune response and nonspecific inflammation upon exposure to extremely high frequency electromagnetic radiation]. Biofizika,48(5). 
  38. Lushnikov, K., Gapeev, A., & Chemeris, N. (2002). [Effects of extremely high-frequency electromagnetic radiation on the immune system and systemic regulation of homeostasis]. Radiatsionnaya Biologiya Radioekologiya,42(5). 
  39. Novoselova, E., Ogaĭ, V., Sinotova, O., Glushkova, O., Sorokina, O., & Fesenko, E. (2002). [Effect of millimeter waves on the immune system in mice with experimental tumors]. Biofizika,47(5).
  40. Ushakov, V., Alipov, E., Shcheglov, V., & Belyaev, I. (2000). Nonthermal effects of extremely high-frequency microwaves on chromatin conformation in cells in vivo-dependence on physical, physiological, and genetic factors. IEEE Transactions On Microwave Theory And Techniques,48(11), 2172-2179. https://doi.org/10.1109/22.884211
  41. Szabo, I., Rojavin, M., Rogers, T., & Ziskin, M. (2001). Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics,22(5), 358-364. https://doi.org/10.1002/bem.62
  42. D’Andrea, J., & Chalfin, S. (2000). Effects of Microwave and Millimeter Wave Radiation on the Eye. Radio Frequency Radiation Dosimetry And Its Relationship To The Biological Effects Of Electromagnetic Fields, 395-402. https://doi.org/10.1007/978-94-011-4191-8_43
  43. Mason, P., Walters, T., Nelson, M., & Nelson, D. (2000). Skin heating effects of millimeter-wave irradiation-thermal modeling results. IEEE Transactions On Microwave Theory And Techniques,48(11), 2111-2120. https://doi.org/10.1109/22.884202
  44. Walters, T., Blick, D., Johnson, L., Adair, E., & Foster, K. (2000). Heating and pain sensation produced in human skin by millimeter waves. Health Physics,78(3), 259-267. https://doi.org/10.1097/00004032-200003000-00003
  45. Haas, A., Le Page, Y., Zhadobov, M., Sauleau, R., Dréan, Y., & Saligaut, C. (2017). Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells. Journal Of Radiation Research,58(4), 439-445. https://doi.org/10.1093/jrr/rrx004
  46. Haas, A., Le Page, Y., Zhadobov, M., Sauleau, R., & Le Dréan, Y. (2016). Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening. Neuroscience Letters,618, 58-65. https://doi.org/10.1016/j.neulet.2016.02.038
  47. Le Dréan, Y., Mahamoud, Y., Le Page, Y., Habauzit, D., Le Quément, C., Zhadobov, M., & Sauleau, R. (2013). State of knowledge on biological effects at 40–60 GHz. Comptes Rendus Physique,14(5), 402-411. https://doi.org/10.1016/j.crhy.2013.02.005
  48. Sivachenko, I., Medvedev, D., Molodtsova, I., Panteleev, S., Sokolov, A., & Lyubashina, O. (2016). Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine. Bulletin Of Experimental Biology And Medicine,160(4), 425-428. https://doi.org/10.1007/s10517-016-3187-7
  49. Soghomonyan, D., Trchounian, K., & Trchounian, A. (2016). Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?. Applied Microbiology And Biotechnology,100(11), 4761-4771. https://doi.org/10.1007/s00253-016-7538-0

References on Millimeter waves in Military Non Lethal Weapon Program
  1. Non-Lethal Weapons Program > About > Frequently Asked Questions > Active Denial System FAQs. Jnlwp.defense.gov. 
  2. The Human Effects Advisory Panel. (2008). A Narrative Summary and Independent Assessment of the Active Denial System. Penn State Applied Research Laboratory. 
  3. LeVine, S. (2009). The Active Denial System A Revolutionary, Non-lethal Weapon for Today’s Battlefield. Washington, DC: National Defense University Center for Technology and National Security Policy.
  4. Law, D. (2012). Active Denial Technology (ADT). Presentation.
  5. Devyatkov N. Effect of electromagnetic radiation of a millimeter wavelength range on biological objects. Sov. Phys. Uspekhi. 1974;16:568. doi: 10.1070/PU1974v016n04ABEH005308. – DOI
  6. Devyatkov N.D., Golant M.B., Betsky O.V. Millimeter Waves and Their Role in Vital Processes. Radio and Svyaz; Moscow, Russia: 1991.

Additional Resources



Environmental Health Trust

Physicians for Safe Technology